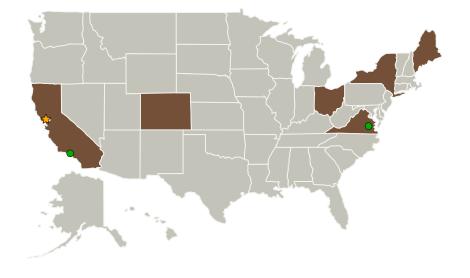
Conformal Ablative TPS (CA-TPS)

Completed Technology Project (2013 - 2017)


Project Introduction

CA-TPS is enabling small businesses and universities with low cost access to space by using off-the-shelf broad goods and transferring the processing technology for a light weight TPS. Use of CA-TPS materials will allow future missions to Mars, Venus and Outer Planets to save both mass and cost.

Anticipated Benefits

NASA funded: CA-TPS provides a lower cost, mass efficient solution that is easier to integrate due to the compliant and conformal nature of the material. CA-TPS can be used as a heat shield TPS for missions that will encounter peak heat flux ~500 W/cm2, peak pressures around 0.4 atm, and shear up to 500 Pa. Conformal ablator makes integration much easier for the back shell where geometric complexities such as penetrations and protrusions often requires expensive integration procedures.

Primary U.S. Work Locations and Key Partners

Conformal Ablative TPS

Table of Contents

Project Introduction	1
Anticipated Benefits	1
Primary U.S. Work Locations	
and Key Partners	1
Organizational Responsibility	1
Project Transitions	2
Project Website:	2
Project Management	2
Technology Maturity (TRL)	2
Target Destination	2

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Ames Research Center (ARC)

Responsible Program:

Game Changing Development

Conformal Ablative TPS (CA-TPS)

NASA

Completed Technology Project (2013 - 2017)

Organizations Performing Work	Role	Туре	Location
Ames Research Center(ARC)	Lead	NASA	Moffett Field,
	Organization	Center	California
Applied Research Associates, Inc.	Supporting Organization	Industry	
Jet Propulsion Laboratory(JPL)	Supporting	NASA	Pasadena,
	Organization	Center	California
Langley Research	Supporting	NASA	Hampton,
Center(LaRC)	Organization	Center	Virginia
Terminal Velocity	Supporting	Industry	Atlanta,
Aerospace, LLC	Organization		Georgia

Primary U.S. Work Locations		
California	Colorado	
Maine	New York	
Ohio	Virginia	

Project Transitions

October 2013: Project Start

September 2017: Closed out

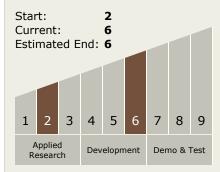
Closeout Summary: With the completion of arcjet testing and the assembly of a pathfinder demonstration unit, CA-TPS achieved a TRL of 4. The CA-TPS proje ct advanced manufacturing. Complex geometry, and size scale-up of a high strain capable vehicle heat shield system. Manufacturing methods were established that can be used to accommodate both single and double curvature sections of a heat shield and aerothermal heating tests demonstrated that the system can handle heating rates of 1000 W/cm2 through ground based testing advancing the capability to TRL 5.

Project Website:

https://www.nasa.gov/directorates/spacetech/home/index.html

Tech®Port Printed on 11/30/2022 07:52 PM UTC

Project Management Program Director:


Mary J Werkheiser

Program Manager:Gary F Meyering

Principal Investigator:

Ethiraj Venkatapathy

Technology Maturity (TRL)

Target Destination

Others Inside the Solar System